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ADDENDUM 

Analytical evaluation of the finite-radius Fourier transform of 
the Uehling potentia1 
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Department of Physics and Schonland Research Cenm for Nuclear Sciences, University of the 
Witwatersrand, Johannesburg, 2050 South Africa 

Received 13 December 1993 

Abstract The' finite-radius Fourier vansform of the firstader vacuum-polarization correction 
to the Coulomb potential of a point charge, required for a Fourier-Bessel evaluation of vacuum- 
polarization potentials of extended charges, is calculated by an efficient analytical method. 

, I 7  
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The need for an accurate and efficient method for the calculation of vacuum-polarization 
potentials of extended charges has recently received new emphasis in connection with the 
problem of muon-catalysed fusion, as vacuum polarization leads to the single most important 
correction to the non-relativistic energies of the ddp and dtp molecular states [l] and 
the effects of finite nuclear size in the vacuumpolarization potential are significant at the 
distances relevant to p-mesic molecular physics [2]. The first-order vacuum-polarization 
potentials of extended charge dishibutions have been calculated in [3] by using an efficient 
Fourier-Bessel method for the evaluation of folding integrals. The application of the 
Fourier-Bessel method requires here the calculation of the finite-radius Fourier transform of 
the vacuum-polarization potential of a point charge, the so-called Uehling potential, and this 
addendum describes a rapidly converging expansion method for such a calculation. This 
completes the analytical treatment of the vacuum-polarization effects of extended charges 
described in [31. 

The Uehling potential [4] is a first-order vacuum-polarization correction of quantum 
elecixodynamics to the Coulomb potential of a point charge e .  It can be written as 

where a = e2/fic = 11137.036 is the fine-structure constant, he = A/m,c = 386.159 fm is 
the reduced Compton wavelength of the electron and the function X I  ( x )  belongs to a class 
of functions defined by the integrals 

These functions can be expressed in closed form [SI in terms of the modified Bessel functions 
& ( x )  and K1 ( x )  and the modified Bessel function integral Kil ( x )  [6] (accurate and efficient 
Chebyshev polynomial approximations of these special functions are given, for example, in 
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[71). Use will be made here of the functions a ( x )  with k in the range -4 < k < 1 the 
closed-form expressions of which are as follows 

1 6 
x 4  

X-4(X) = 2x3'24 +3X2)Ko(X) + - (4+X2)Ki(X)  

A recursive scheme has been given in [81 for the calculation of the functions x-(x) with 

The infinite-radius Fourier transform of the Uehling potential can be expressed in terms 
k < -3. 

of elementary functions 131 

Unfortunately, it does not seem possible to evaluate the finiteradius Fourier transform of 
the Uehling potential 

O c R ) ( q )  = 4a U(r)jo(qr)r'dr (5) bR 
in closed form; in [3]  it has been expressed for a set of discrete arguments qn as 

where the finite-radius correction to the Fourier transform fi(m)(qn) is given in terms of the 
integral 

Whit the integral I ( /&  U), for all the values of p and U of physical interest, is not difficult 
to evaluate with good accuracy by a numerical quadrature, taking appropriate care of the 
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square-root ‘singularity’ at t = 1, it would be preferable to be able to evaluate this integral 
by an analytical method. 

It is convenient to define a class of integrals 

The integral I(p, U) is thus 

IG.4 U) = ,$O(P, v). (9) 
The functions &(p, U) are related to the functions Xk(p) in the recurrence relation, valid 
for any integer k, 

( 10) 

which follows from the relation between the integrands in the integral definitions (2) and 
(8) of these functions. The finite-radius Fourier transform of the Uehling potential at an 
arbitrary point q is now expressed as 

1 
,#!A@, U) = ; z [ X L ( @ )  - ,#k-Z(P, 

(11) 

The problem of the evaluation of eCR)(q) is thus equivalent to the problem of the evaluation 
ofthefunctions&(p, v )  and&(p, U). Expanding (1+1/2tz)(1-l/t2)112 in theintegrandof 
the integal definition (8) of @k(p, U) in powers of l / t z ,  the following series representation 
of these functions is obtained: 

Using tabulated integrals (5.1.43 of 161 and 5.221.1 of [9]) ,  theexpansion functions Fm(p, U) 
in this series can be evaluated in closed form in terms of the exponential integral EI(z) of 
a complex ar-went and the exponential integrals EX(&) as 

(13) 
for nonnegative integers m. This supplies starting functions Fo(p, U) and F1(pL, U) that can 
be used in a recurrence evaluation of Fm@, U) for any integer m 

1 Fo(p. U) = -- Im[e””E~(p + &U)] 
U 
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The above recurrence relation is analogous to that of equation (10); it is numerically stable 
for values U > 1. The exponential integral 'El (2) with a complex argument can be evaluated 
by a continued fraction [ 101 

. . .) El(z)=e-z(--- 1 12 22 
1 +z-  3 + z -  5+z-  

which converges rapidly for arguments with absolute values IzI > 1,  which is satisfied 
amply at points q,, = (n - f ) z / R  or nn/R required in a Fourier-Bessel expansion where 
Ip +ipul > pu = (n - 5)ir or nz. The exponential integrals Em(p), m z 1 are calculated 
easily from the standard special function El (p)  using the recurrence relations 

I 

Functions E,@)  with m 4 0 are expressible in terms of the exponential function and can 
be obtained from EO(@) = e--P/p with the above recurrence relations. 

The terms of the series (12) for the functions &(p, U) can be thus calculated accurately 
and efficiently but the series itself converges very slowly (approximately as the series 
E, r 5 I 2 )  and as such is impractical for an accurate evaluation of the functions &&, U) 
with arguments of physical interest. This problem is solved by  expressing the series (12) 
in terms of a series whose coefficients are the differences U. - of the coefficients of 
(12) and which converges much more rapidly. To this effect the recurrence relation (14) is 
used for then > I terms in (12): 

W 

V % k ( P ,  v) = V 2 U O F k ( P ,  U) + C U " I E & + k ( k 4  - F?n+k-Z(LL, 
"=I 

Here, the series representation of the functions xk(p) in terms of the exponential integrals 

is employed. Adding equations (12) and (17) and using the recurrence relation (14) to write 
ao[u2Fk(p, U) - Ek(p)I as -QFk-z(p, U). the functions &(p, U) are now expressed as 

(19) 
I 

u z +  1 4k(P3 U) = - [XL(P) - aOFk-Z(IL. U) + $!%, V I 1  

where @F)(p, U) represents a series whose coefficients are the differences of the original 
coefficients. More generally, 
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The coefficents a,? have the values 

The series for @(p, U) converges sufficiently rapidly so that the expression (19) can be 
already used for an accurate evaluation of the functions &(p; U). 

It is useful to repeat the above procedure several times, thus obtaining successive series 
(20) with higher-order-difference coefficients that converge progressively more rapidly (the 
rate of convergence of the series #if)(p, U) is approximately that of the series En n-('+5'2)). 
In analogy with equation (19), the lth-order series (20) is then expressed in terms of 
$il+l)(M, U) as 

where $(p) are functions defined by series representations in terms of the exponential 
integrals 

As aAf) = a:'-') - & ~ ) ,  the Zth-order functions xf'(p) are related to functions of order 
I - 1 by the relation 

xjo(p) =~x,-" (w) - X:!l)(Ld + a:-')Ek-Z(P) Xf)(P) = X k ( / L ) .  (24) 

By a repeated use of (24), the lth-order functions can be expressed in terms of the functions 
xm(p) and Em(p) with m decreasing from m = k and k - 2, respectively, to m = k - U. 
More explicitly, 

1-1 

where AL2 is the operator of the backward two-step difference A-zfk = fk - fk-2 to be 
applied I-times. It is now seen from equation (22) that q$)(p, u)/ (u2 + 1)' is the lth-order 
remainder term in an expansion of &(p, U) in powers of l/(u2 + 1) 

The use of equation (25) for the evaluation of the functions xf)(p), which are needed 
for the coefficients of the expansion (26), involves the calculation of the differences of 
numbers that become increasingly large as the expansion order 1 increases, and so, in 
principle, this procedure is unstable numerically. The functions ,$'(p) with n 2 1 can 
be calculated accurately, however, by summing directly the series (23). In any case, the 
Ith-order remainder term in the expansion (26) can be evaluated accurately by summing the 
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series (20) for &)(p, U), which converges rapidly when 1 > 1, and, moreover, the remainder 
term is a small correction when 1 > 2 and v >> 1. This means that the use of the expansion 
(26) in Fourier-Bessel calculations of the vacuum-polarization potentials of nuclear charge 
distributions does not require the expansion order I to be higher than the value I = 3, say, 
and thus, the only functions ,$)(p), k = 0 , l  that are then, in fact, needed are of order not 
greater than n = 2 and, therefore, still calculable sufficiently accurately using equation (25) 
with the functions xm(p)  with m from m = 1 to m = -4 (see equation (3)). 

Numerical tests were performed with the values of p, and v employed in the calculations 
of [3]. They showed that, using equation (26) with 1 = 3 and equation (25). the evaluation 
of &(p, U), k = 0, 1 to an accuracy within two digits of the double floating-point precision 
(i.e. 16 digits) requires a calculation of &@)(p, U), k = 0 , l  that included only for the 
lowest values of U more than a few terms in the series (20). A computer program VACPOL 
11 11, which can calculate the first-order vacuum-polarization potentials of extended nuclear 
charge distributions to more than ten-digit accuracy, has been written as an implementation 
of the analytical methods presented here and those of [3]. 
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