

Home Search Collections Journals About Contact us My IOPscience

Analytical evaluation of the finite-radius Fourier transform of the Uehling potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1994 J. Phys. A: Math. Gen. 27 4021 (http://iopscience.iop.org/0305-4470/27/11/047)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.68 The article was downloaded on 01/06/2010 at 21:35

Please note that terms and conditions apply.

ADDENDUM

Analytical evaluation of the finite-radius Fourier transform of the Uehling potential

V Hnizdo

Department of Physics and Schonland Research Centre for Nuclear Sciences, University of the Witwatersrand, Johannesburg, 2050 South Africa

Received 13 December 1993

Abstract. The finite-radius Fourier transform of the first-order vacuum-polarization correction to the Coulomb potential of a point charge, required for a Fourier–Bessel evaluation of vacuum-polarization potentials of extended charges, is calculated by an efficient analytical method.

The need for an accurate and efficient method for the calculation of vacuum-polarization potentials of extended charges has recently received new emphasis in connection with the problem of muon-catalysed fusion, as vacuum polarization leads to the single most important correction to the non-relativistic energies of the $dd\mu$ and $dt\mu$ molecular states [1] and the effects of finite nuclear size in the vacuum-polarization potential are significant at the distances relevant to μ -mesic molecular physics [2]. The first-order vacuum-polarization potentials of extended charge distributions have been calculated in [3] by using an efficient Fourier-Bessel method for the evaluation of folding integrals. The application of the vacuum-polarization potential of a point charge, the so-called Uehling potential, and this addendum describes a rapidly converging expansion method for such a calculation. This completes the analytical treatment of the vacuum-polarization effects of extended charges described in [3].

The Uehling potential [4] is a first-order vacuum-polarization correction of quantum electrodynamics to the Coulomb potential of a point charge e. It can be written as

$$U(r) = \frac{2\alpha e}{3\pi r} \chi_1(2r/\lambda_e) \tag{1}$$

where $\alpha = e^2/\hbar c = 1/137.036$ is the fine-structure constant, $\lambda_e = \hbar/m_e c = 386.159$ fm is the reduced Compton wavelength of the electron and the function $\chi_I(x)$ belongs to a class of functions defined by the integrals

$$\chi_k(x) = \int_1^\infty \frac{e^{-xt}}{t^k} \left(1 + \frac{1}{2t^2}\right) \sqrt{1 - \frac{1}{t^2}} \, \mathrm{d}t.$$
 (2)

These functions can be expressed in closed form [5] in terms of the modified Bessel functions $K_0(x)$ and $K_1(x)$ and the modified Bessel function integral $Ki_1(x)$ [6] (accurate and efficient Chebyshev polynomial approximations of these special functions are given, for example, in

0305-4470/94/114021+06\$19.50 © 1994 IOP Publishing Ltd

4021

[7]). Use will be made here of the functions $\chi_k(x)$ with k in the range $-4 \le k \le 1$ the closed-form expressions of which are as follows

$$\chi_{-4}(x) = \frac{1}{2x^3} (24 + 3x^2) K_0(x) + \frac{6}{x^4} (4 + x^2) K_1(x)$$

$$\chi_{-3}(x) = \frac{3}{x^2} K_0(x) + \frac{3}{2x^3} (4 + x^2) K_1(x)$$

$$\chi_{-2}(x) = \frac{1}{x} K_0(x) + \frac{1}{2x^2} (4 + x^2) K_1(x) - \frac{1}{2} \text{Ki}_1(x)$$

$$\chi_{-1}(x) = \frac{1}{2} K_0(x) + \frac{1}{2x} (2 - x^2) K_1(x) + \frac{x}{2} \text{Ki}_1(x)$$

$$\chi_0(x) = -\frac{x}{4} K_0(x) + \frac{1}{4} (4 + x^2) K_1(x) - \frac{1}{4} (3 + x^2) \text{Ki}_1(x)$$

$$\chi_1(x) = \frac{1}{12} (12 + x^2) K_0(x) - \frac{x}{12} (10 + x^2) K_1(x) + \frac{x}{12} (9 + x^2) \text{Ki}_1(x).$$
(3)

A recursive scheme has been given in [8] for the calculation of the functions $\chi_k(x)$ with $k \leq -3$.

The infinite-radius Fourier transform of the Uehling potential can be expressed in terms of elementary functions [3]

$$\tilde{U}^{(\infty)}(q) = 4\pi \int_0^\infty U(r) j_0(qr) r^2 dr$$

$$= \frac{4\alpha e}{3q^2} \left[\left(1 - \frac{2}{\chi_e^2 q^2} \right) \left(s \ln \frac{s+1}{s-1} - 2 \right) + \frac{1}{3} \right] \qquad s = \sqrt{1 + \left(\frac{2}{\chi_e q} \right)^2}.$$
(4)

Unfortunately, it does not seem possible to evaluate the finite-radius Fourier transform of the Uehling potential

$$\tilde{U}^{(R)}(q) = 4\pi \int_0^R U(r) j_0(qr) r^2 \,\mathrm{d}r$$
(5)

in closed form; in [3] it has been expressed for a set of discrete arguments q_n as

$$\tilde{U}^{(R)}(q_n) = \tilde{U}^{(\infty)}(q_n) + (-1)^n \frac{4\alpha e \lambda_e}{3q_n} I\left(\frac{2R}{\lambda_e}, \frac{\lambda_e q_n}{2}\right)$$

$$q_n = \left(n - \frac{1}{2}\right) \frac{\pi}{R} \qquad n = 1, 2, 3, \dots$$
(6)

where the finite-radius correction to the Fourier transform $\tilde{U}^{(\infty)}(q_n)$ is given in terms of the integral

$$I(\mu,\nu) = \int_{1}^{\infty} \frac{e^{-\mu t}}{\nu^2 + t^2} \left(1 + \frac{1}{2t^2}\right) \sqrt{1 - \frac{1}{t^2}} \, \mathrm{d}t.$$
(7)

While the integral $I(\mu, \nu)$, for all the values of μ and ν of physical interest, is not difficult to evaluate with good accuracy by a numerical quadrature, taking appropriate care of the

square-root 'singularity' at t = 1, it would be preferable to be able to evaluate this integral by an analytical method.

It is convenient to define a class of integrals

$$\phi_k(\mu,\nu) = \int_1^\infty \frac{\mathrm{e}^{-\mu t}}{\nu^2 + t^2} \frac{1}{t^k} \left(1 + \frac{1}{2t^2}\right) \sqrt{1 - \frac{1}{t^2}} \,\mathrm{d}t. \tag{8}$$

The integral $I(\mu, \nu)$ is thus

$$I(\mu, \nu) = \phi_0(\mu, \nu).$$
 (9)

The functions $\phi_k(\mu, \nu)$ are related to the functions $\chi_k(\mu)$ in the recurrence relation, valid for any integer k,

$$\phi_k(\mu,\nu) = \frac{1}{\nu^2} [\chi_k(\mu) - \phi_{k-2}(\mu,\nu)]$$
(10)

which follows from the relation between the integrands in the integral definitions (2) and (8) of these functions. The finite-radius Fourier transform of the Uehling potential at an arbitrary point q is now expressed as

$$\tilde{U}^{(R)}(q) = \tilde{U}^{(\infty)}(q) - \frac{4\alpha e\lambda_e}{3q} \sin(qR)\phi_0\left(\frac{2R}{\lambda_e}, \frac{\lambda_e q}{2}\right) - \frac{2\alpha e\lambda_e^2}{3}\cos(qR)\phi_1\left(\frac{2R}{\lambda_e}, \frac{\lambda_e q}{2}\right).$$
(11)

The problem of the evaluation of $\tilde{U}^{(R)}(q)$ is thus equivalent to the problem of the evaluation of the functions $\phi_0(\mu, \nu)$ and $\phi_1(\mu, \nu)$. Expanding $(1+1/2t^2)(1-1/t^2)^{1/2}$ in the integrand of the integral definition (8) of $\phi_k(\mu, \nu)$ in powers of $1/t^2$, the following series representation of these functions is obtained:

$$\phi_k(\mu,\nu) = \sum_{n=0}^{\infty} a_n \int_1^{\infty} \frac{e^{-\mu t}}{\nu^2 + t^2} \frac{dt}{t^{2n+k}} = \sum_{n=0}^{\infty} a_n F_{2n+k}(\mu,\nu)$$

$$a_0 = 1 \qquad a_1 = 0 \qquad a_2 = -\frac{3}{8} \qquad a_n = \frac{(n-1)(2n-5)}{2n(n-2)} a_{n-1}.$$
(12)

Using tabulated integrals (5.1.43 of [6] and 5.221,1 of [9]), the expansion functions $F_m(\mu, \nu)$ in this series can be evaluated in closed form in terms of the exponential integral $E_1(z)$ of a complex argument and the exponential integrals $E_k(\mu)$ as

$$F_{m}(\mu,\nu) = \int_{1}^{\infty} \frac{e^{-\mu t}}{\nu^{2} + t^{2}} \frac{dt}{t^{m}} = -\frac{1}{\nu} \operatorname{Im}\left[\left(\frac{i}{\nu}\right)^{m} e^{i\mu\nu} E_{1}(\mu + i\mu\nu) - \sum_{k=0}^{m-1} \left(\frac{i}{\nu}\right)^{m-k} E_{k+1}(\mu)\right]$$
(13)

for non-negative integers m. This supplies starting functions $F_0(\mu, \nu)$ and $F_1(\mu, \nu)$ that can be used in a recurrence evaluation of $F_m(\mu, \nu)$ for any integer m

$$F_{0}(\mu, \nu) = -\frac{1}{\nu} \operatorname{Im}[e^{i\mu\nu}E_{1}(\mu + i\mu\nu)]$$

$$F_{1}(\mu, \nu) = -\frac{1}{\nu^{2}} \{\operatorname{Re}[e^{i\mu\nu}E_{1}(\mu + i\mu\nu)] - E_{1}(\mu)\}$$

$$F_{m}(\mu, \nu) = \frac{1}{\nu^{2}} [E_{m}(\mu) - F_{m-2}(\mu, \nu)].$$
(14)

The above recurrence relation is analogous to that of equation (10); it is numerically stable for values $\nu > 1$. The exponential integral $E_1(z)$ with a complex argument can be evaluated by a continued fraction [10]

$$E_1(z) = e^{-z} \left(\frac{1}{1+z-3+z-5+z-} \cdots \right)$$
(15)

which converges rapidly for arguments with absolute values |z| > 1, which is satisfied amply at points $q_n = (n - \frac{1}{2})\pi/R$ or $n\pi/R$ required in a Fourier-Bessel expansion where $|\mu + i\mu\nu| > \mu\nu = (n - \frac{1}{2})\pi$ or $n\pi$. The exponential integrals $E_m(\mu), m > 1$ are calculated easily from the standard special function $E_1(\mu)$ using the recurrence relations

$$E_m(\mu) = \frac{e^{-\mu} - \mu E_{m-1}(\mu)}{m-1} \qquad m \neq 1$$

$$E_m(\mu) = \frac{(m-2-\mu)e^{-\mu} + \mu^2 E_{m-2}(\mu)}{(m-1)(m-2)} \qquad m \neq 1, 2.$$
(16)

Functions $E_m(\mu)$ with $m \leq 0$ are expressible in terms of the exponential function and can be obtained from $E_0(\mu) = e^{-\mu}/\mu$ with the above recurrence relations.

The terms of the series (12) for the functions $\phi_k(\mu, \nu)$ can be thus calculated accurately and efficiently but the series itself converges very slowly (approximately as the series $\sum_n n^{-5/2}$) and as such is impractical for an accurate evaluation of the functions $\phi_k(\mu, \nu)$ with arguments of physical interest. This problem is solved by expressing the series (12) in terms of a series whose coefficients are the differences $a_n - a_{n+1}$ of the coefficients of (12) and which converges much more rapidly. To this effect the recurrence relation (14) is used for the $n \ge 1$ terms in (12):

$$\nu^{2}\phi_{k}(\mu,\nu) = \nu^{2}a_{0}F_{k}(\mu,\nu) + \sum_{n=1}^{\infty}a_{n}[E_{2n+k}(\mu) - F_{2n+k-2}(\mu,\nu)]$$
$$= \nu^{2}a_{0}F_{k}(\mu,\nu) + \chi_{k}(\mu) - a_{0}E_{k}(\mu) - \sum_{n=0}^{\infty}a_{n+1}F_{2n+k}(\mu,\nu).$$
(17)

Here, the series representation of the functions $\chi_k(\mu)$ in terms of the exponential integrals

$$\chi_k(\mu) = \sum_{n=0}^{\infty} a_n \int_1^{\infty} \frac{e^{-\mu t}}{t^{2n+k}} dt = \sum_{n=0}^{\infty} a_n E_{2n+k}(\mu)$$
(18)

is employed. Adding equations (12) and (17) and using the recurrence relation (14) to write $a_0[\nu^2 F_k(\mu, \nu) - E_k(\mu)]$ as $-a_0 F_{k-2}(\mu, \nu)$, the functions $\phi_k(\mu, \nu)$ are now expressed as

$$\phi_k(\mu,\nu) = \frac{1}{\nu^2 + 1} [\chi_k(\mu) - a_0 F_{k-2}(\mu,\nu) + \phi_k^{(1)}(\mu,\nu)]$$
(19)

where $\phi_k^{(1)}(\mu, \nu)$ represents a series whose coefficients are the differences of the original coefficients. More generally,

$$\phi_k^{(l)}(\mu,\nu) = \sum_{n=0}^{\infty} a_n^{(l)} F_{2n+k}(\mu,\nu) \qquad a_n^{(l)} = a_n^{(l-1)} - a_{n+1}^{(l-1)} \qquad a_n^{(0)} = a_n.$$
(20)

The coefficients $a_n^{(l)}$ have the values

$$a_{0}^{(l)} = \frac{(l-3)(2l+1)}{2l(l-4)} a_{0}^{(l-1)} \quad a_{n}^{(l)} = \frac{(3n+l-3)(2n-5)}{2(n+l)(3n+l-6)} a_{n-1}^{(l)} (a_{0}^{(4)} = -\frac{105}{128}) \qquad (a_{1}^{(3)} = \frac{105}{128}).$$
(21)

The series for $\phi_k^{(1)}(\mu, \nu)$ converges sufficiently rapidly so that the expression (19) can be already used for an accurate evaluation of the functions $\phi_k(\mu, \nu)$.

It is useful to repeat the above procedure several times, thus obtaining successive series (20) with higher-order-difference coefficients that converge progressively more rapidly (the rate of convergence of the series $\phi_k^{(l)}(\mu, \nu)$ is approximately that of the series $\sum_n n^{-(l+5/2)}$). In analogy with equation (19), the *l*th-order series (20) is then expressed in terms of $\phi_k^{(l+1)}(\mu, \nu)$ as

$$\phi_k^{(l)}(\mu,\nu) = \frac{1}{\nu^2 + 1} [\chi_k^{(l)}(\mu) - a_0^{(l)} F_{k-2}(\mu,\nu) + \phi_k^{(l+1)}(\mu,\nu)]$$
(22)

where $\chi_k^{(l)}(\mu)$ are functions defined by series representations in terms of the exponential integrals

$$\chi_k^{(l)}(\mu) = \sum_{n=0}^{\infty} a_n^{(l)} E_{2n+k}(\mu).$$
⁽²³⁾

As $a_n^{(l)} = a_n^{(l-1)} - a_{n+1}^{(l-1)}$, the *l*th-order functions $\chi_k^{(l)}(\mu)$ are related to functions of order l-1 by the relation

$$\chi_k^{(l)}(\mu) = \chi_k^{(l-1)}(\mu) - \chi_{k-2}^{(l-1)}(\mu) + a_0^{(l-1)} E_{k-2}(\mu) \qquad \chi_k^{(0)}(\mu) = \chi_k(\mu).$$
(24)

By a repeated use of (24), the *l*th-order functions can be expressed in terms of the functions $\chi_m(\mu)$ and $E_m(\mu)$ with *m* decreasing from m = k and k - 2, respectively, to m = k - 2l. More explicitly,

$$\chi_{k}^{(l)}(\mu) = \Delta_{-2}^{l} \chi_{k}(\mu) + \sum_{m=0}^{l-1} a_{0}^{(m)} \Delta_{-2}^{l-1-m} E_{k-2}(\mu)$$
⁽²⁵⁾

where Δ_{-2}^{l} is the operator of the backward two-step difference $\Delta_{-2}f_{k} = f_{k} - f_{k-2}$ to be applied *l*-times. It is now seen from equation (22) that $\phi_{k}^{(l)}(\mu, \nu)/(\nu^{2} + 1)^{l}$ is the *l*th-order remainder term in an expansion of $\phi_{k}(\mu, \nu)$ in powers of $1/(\nu^{2} + 1)$

$$\phi_k(\mu,\nu) = \sum_{n=0}^{l-1} \frac{\chi_k^{(n)}(\mu) - a_0^{(n)} F_{k-2}(\mu,\nu)}{(\nu^2 + 1)^{n+1}} + \frac{\phi_k^{(l)}(\mu,\nu)}{(\nu^2 + 1)^l}.$$
(26)

The use of equation (25) for the evaluation of the functions $\chi_k^{(n)}(\mu)$, which are needed for the coefficients of the expansion (26), involves the calculation of the differences of numbers that become increasingly large as the expansion order *l* increases, and so, in principle, this procedure is unstable numerically. The functions $\chi_k^{(n)}(\mu)$ with $n \ge 1$ can be calculated accurately, however, by summing directly the series (23). In any case, the *l*th-order remainder term in the expansion (26) can be evaluated accurately by summing the series (20) for $\phi_k^{(l)}(\mu, \nu)$, which converges rapidly when l > 1, and, moreover, the remainder term is a small correction when $l \ge 2$ and $\nu \gg 1$. This means that the use of the expansion (26) in Fourier-Bessel calculations of the vacuum-polarization potentials of nuclear charge distributions does not require the expansion order l to be higher than the value l = 3, say, and thus, the only functions $\chi_k^{(n)}(\mu)$, k = 0, 1 that are then, in fact, needed are of order not greater than n = 2 and, therefore, still calculable sufficiently accurately using equation (25) with the functions $\chi_m(\mu)$ with m from m = 1 to m = -4 (see equation (3)).

Numerical tests were performed with the values of μ and ν employed in the calculations of [3]. They showed that, using equation (26) with l = 3 and equation (25), the evaluation of $\phi_k(\mu, \nu), k = 0, 1$ to an accuracy within two digits of the double floating-point precision (i.e. 16 digits) requires a calculation of $\phi_k^{(3)}(\mu, \nu), k = 0, 1$ that included only for the lowest values of ν more than a few terms in the series (20). A computer program VACPOL [11], which can calculate the first-order vacuum-polarization potentials of extended nuclear charge distributions to more than ten-digit accuracy, has been written as an implementation of the analytical methods presented here and those of [3].

References

- Breunlich W H, Kammel P, Cohen J S and Leon M 1989 Annual Rev. Nucl. Part. Sci. 39 311 Ponomarev L I 1990 Contemp. Phys. 31 219
- [2] Rinker G A and Wilets L 1975 Phys. Rev. A 12 748
- [3] Hnizdo V 1988 J. Phys. A: Math. Gen. 21 3629
- [4] Uehling E A 1935 Phys. Rev. 48 55
- [5] Klarsfeld S 1977 Phys. Lett. 66B 86
- [6] Abramowitz M and Stegun I A (ed) 1964 Handbook of Mathematical Functions (Washington: National Bureau of Standards)
- [7] Luke Y L 1975 Mathematical Functions and their Approximations (New York: Academic)
- [8] Roesel F, Trautmann D and Viollier R D 1977 Nucl. Phys. A 292 523
- [9] Gradshtein I S and Ryzhik I M 1980 Table of Integrals, Series and Products (New York: Academic)
- [10] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipes in Fortran 2nd edn (Cambridge: Cambridge University Press)
- [11] Hnizdo V Comput. Phys. Commun. submitted